论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文编号:
论文题目: Rising vegetation activity dominates growing water use efficiency in the Asian permafrost region from 1900 to 2100.
英文论文题目: Rising vegetation activity dominates growing water use efficiency in the Asian permafrost region from 1900 to 2100.
第一作者: Yuan, Fenghui
英文第一作者: Yuan, Fenghui
联系作者: 徐小锋
英文联系作者: Xu, Xiaofeng
外单位作者单位:
英文外单位作者单位:
发表年度: 2020
卷: 736
期:
页码: 139587
摘要:

Permafrost play an important role in regulating global climate system. We analyzed the gross primary productivity (GPP), net primary productivity (NPP), and evapotranspiration (ET) derived from MODIS and three earth system models participated in the Coupled Model Inter-comparison Project Phase 6 (CMIP6) in the Asian permafrost region. The water use efficiency (WUE) was further computed. The simulated GPP, NPP, and ET show slightly increasing trends during historical period (1900-2014) and strong increasing trends in projection period (2015-2100), and projected impacts of climate change on all variables are greater under high-emission scenarios than low-emission scenarios. Further analysis revealed higher increases in GPP and NPP than that of ET, indicating that vegetation carbon sequestration governs the growing WUE under historical and projected periods in this region. The GPP, NPP and ET showed higher changing rates in western, central and southeast areas of this region, and WUE (WUEGPP, and WUENPP) shows the similar spatial pattern. Compared to MODIS-derived GPP, NPP, and ET during 2000-2014, Earth system models yield the best estimates for NPP, while slight underestimations for GPP and ET, and thus slight overestimations for WUEGPP and WUENPP. This study highlights the predominant role of vegetation activity in regulating regional WUE in Asian permafrost region under future climate change. Vegetation domination of the growing water use efficiency implies that the permafrost region may continue acting efficiently in sequestrating atmospheric carbon in terms of water consumption throughout the 21st century.

 
英文摘要:

Permafrost play an important role in regulating global climate system. We analyzed the gross primary productivity (GPP), net primary productivity (NPP), and evapotranspiration (ET) derived from MODIS and three earth system models participated in the Coupled Model Inter-comparison Project Phase 6 (CMIP6) in the Asian permafrost region. The water use efficiency (WUE) was further computed. The simulated GPP, NPP, and ET show slightly increasing trends during historical period (1900-2014) and strong increasing trends in projection period (2015-2100), and projected impacts of climate change on all variables are greater under high-emission scenarios than low-emission scenarios. Further analysis revealed higher increases in GPP and NPP than that of ET, indicating that vegetation carbon sequestration governs the growing WUE under historical and projected periods in this region. The GPP, NPP and ET showed higher changing rates in western, central and southeast areas of this region, and WUE (WUEGPP, and WUENPP) shows the similar spatial pattern. Compared to MODIS-derived GPP, NPP, and ET during 2000-2014, Earth system models yield the best estimates for NPP, while slight underestimations for GPP and ET, and thus slight overestimations for WUEGPP and WUENPP. This study highlights the predominant role of vegetation activity in regulating regional WUE in Asian permafrost region under future climate change. Vegetation domination of the growing water use efficiency implies that the permafrost region may continue acting efficiently in sequestrating atmospheric carbon in terms of water consumption throughout the 21st century.

刊物名称: The Science of the total environment
英文刊物名称: The Science of the total environment
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者: Liu, Jianzhao;Zuo, Yunjiang;Guo, Ziyu;Wang, Nannan;Song, Changchun;Wang, Zongming;Sun, Li;Guo, Yuedong;Song, Yanyu;Mao, Dehua;Xu, Feifan
英文参与作者: Liu, Jianzhao;Zuo, Yunjiang;Guo, Ziyu;Wang, Nannan;Song, Changchun;Wang, Zongming;Sun, Li;Guo, Yuedong;Song, Yanyu;Mao, Dehua;Xu, Feifan
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1