论文
  您现在的位置:首页 > 科研成果 > 论文
  论文 更多内容>>
论文编号:
论文题目: Geographical Distribution of Iron Redox Cycling Bacterial Community in Peatlands: Distinct Assemble Mechanism Across Environmental Gradient
英文论文题目: Geographical Distribution of Iron Redox Cycling Bacterial Community in Peatlands: Distinct Assemble Mechanism Across Environmental Gradient
第一作者: Yang, Liang
英文第一作者: Yang, Liang
联系作者: 姜明
英文联系作者: M. Jiang
外单位作者单位:
英文外单位作者单位:
发表年度: 2021
卷: 12
期:
页码:
摘要:

Microbial-mediated iron (Fe) oxidation and reduction greatly contribute to the biogeochemistry and mineralogy of ecosystems. However, knowledge regarding the composition and distribution patterns of iron redox cycling bacteria in peatlands remains limited. Here, using high-throughput sequencing, we compared biogeographic patterns and assemblies of the iron redox cycling bacterial community between soil and water samples obtained from different types of peatland across four regions in Northeast China. A total of 48 phylotypes were identified as potential iron redox bacteria, which had greater than 97% similarity with Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB). Among them, Rhodoferax, Clostridium, Geothrix, Sideroxydans, Geobacter, Desulfovibrio, and Leptothrix could be used as bioindicators in peatlands for characterizing different hydrological conditions and nutrient demands. Across all samples, bacterial communities associated with iron redox cycling were mainly affected by pH, dissolved organic carbon (DOC), and Fe2+. Distance-decay relationship (DDR) analysis indicated that iron redox cycling bacterial communities in soil, but not in water, were highly correlated with geographic distance. Additionally, null model analysis revealed that stochastic processes substituted deterministic processes from minerotrophic fens to ombrotrophic bogs in soils, whereas deterministic processes were dominant in water. Overall, these observations suggest that bacteria involved in iron redox cycling are widespread in diverse habitats and exhibit distinct patterns of distribution and community assembly mechanisms between soil and water in peatlands.

英文摘要:

Microbial-mediated iron (Fe) oxidation and reduction greatly contribute to the biogeochemistry and mineralogy of ecosystems. However, knowledge regarding the composition and distribution patterns of iron redox cycling bacteria in peatlands remains limited. Here, using high-throughput sequencing, we compared biogeographic patterns and assemblies of the iron redox cycling bacterial community between soil and water samples obtained from different types of peatland across four regions in Northeast China. A total of 48 phylotypes were identified as potential iron redox bacteria, which had greater than 97% similarity with Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB). Among them, Rhodoferax, Clostridium, Geothrix, Sideroxydans, Geobacter, Desulfovibrio, and Leptothrix could be used as bioindicators in peatlands for characterizing different hydrological conditions and nutrient demands. Across all samples, bacterial communities associated with iron redox cycling were mainly affected by pH, dissolved organic carbon (DOC), and Fe2+. Distance-decay relationship (DDR) analysis indicated that iron redox cycling bacterial communities in soil, but not in water, were highly correlated with geographic distance. Additionally, null model analysis revealed that stochastic processes substituted deterministic processes from minerotrophic fens to ombrotrophic bogs in soils, whereas deterministic processes were dominant in water. Overall, these observations suggest that bacteria involved in iron redox cycling are widespread in diverse habitats and exhibit distinct patterns of distribution and community assembly mechanisms between soil and water in peatlands.

刊物名称: Frontiers in Microbiology
英文刊物名称: Frontiers in Microbiology
论文全文:
英文论文全文:
全文链接:
其它备注:
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者: L. Yang, M. Jiang, Y. C. Zou, L. Qin and Y. Y. Chen
英文参与作者: L. Yang, M. Jiang, Y. C. Zou, L. Qin and Y. Y. Chen
地址:吉林省长春市高新北区盛北大街4888号 邮编:130102
电话: +86 431 85542266 传真: +86 431 85542298  Email: neigae@iga.ac.cn
Copyright(2002-2021)中国科学院东北地理与农业生态研究所 吉ICP备05002032号-1